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Abstract
Dementia is a threatening condition that affects communication, thinking, and memory skills, being Alzheimer its most

common type. The early detection of this disease allows for better care of the patient. Recently, Machine Learning (ML)

methods have been developed to support the finding and forecast of Alzheimer’s disease through the analysis of Magnetic

Resonance Images (MRI). Existing ML methods present some limitations: (i) require an expert to extract relevant features

from MRI, (ii) depend on multistep image preprocessing, or (iii) need complex architectures and several images to train

them. To surpass these limitations, in the present work, we analyze different Convolutional Neural Networks (CNNs) for

Alzheimer’s classification, formulated to learn from a set of representative MRI sagittal images available in the Open

Access Series of Imaging Studies (OASIS-2, 72 non-demented and 64 demented subjects, with ages from 60 to 96 years)

and the Alzheimer’s Disease Neuroimaging Initiative (ADNI, 200 early Alzheimer and 200 control patients, with ages from

55 to 90 years) datasets. All CNNs were compared with state-of-the-art ML methods, being the VGG-16 variant the best

performed architecture with an average validation accuracy of 56% ± 4%, evaluated with a bootstrapping strategy to

measure the variability on independent runs. This result confirms the best performance reported so far (\ 60%) with

different ML methods. The low accuracy evidences the hardness of the problem and contrasts with the higher accuracy

levels (up to 97%) reached with preprocessed and well-characterized MRI axial images from the OASIS-1 or ADNI-2

datasets. Thus, opening an interesting discussion about what MRI plane should be considered when training CNNs for

Alzheimer’s classification, and leaving a wide room for improvement on the performance of CNNs trained with sagittal

MRI images. The resulting model implemented in software and experimental data are publicly available.
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1 Introduction

Dementia is a dangerous condition characterized by

affecting communication, thinking, and memory skills. It

affects over 50 million people around the world, with

nearly 60% living in developing nations. Ten million new

cases arise each year and there is no treatment to cure this

disorder or to modify its progression [1]. Magnetic

Resonance Imaging (MRI) data allow us to understand the

inner functioning of the human brain. In MRI studies, radio

waves along with a magnet are employed to generate brain

images. Normal and diseased tissue can be discriminated

from these images [2, 3]; thus, MRI data can support the

finding and forecast of dementia. The early detection of

dementia allows us to identify the initial state of the disease

and to act for better care of the patient [4]. The screening

process is a burden to neuroradiologists and depends on

their experience, which is why there is a need for com-

puter-assisted tools that increase the reliability of the

diagnosis. Moreover, cognitive tests, evaluate patients who

present dementia symptoms, while MRI can provide

structural markers such as the reduction of the hippocam-

pus or brain atrophy before these symptoms appear [5].
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The problem of classifying dementia from MRI data has

been addressed since 2008 with the Open Access Series of

Imaging Studies (OASIS) project, which provides neu-

roimaging public data for scientific purposes [6]. This

dataset has been used for the 3D modeling of some regions

of the brain [7], subjective age estimation based on brain

age [8], long-term chronological change in disease pro-

gression [9], and prediction of brain connectivity from a

single timepoint [10]. ADNI is a consortium of universities

and medical centers in the United States and Canada

established to develop standardized imaging techniques

and biomarker procedures in normal subjects, subjects with

mild Alzheimer’s Disease (AD), and subjects with AD

[11]. Recently developed computer-aided tools based on

Machine Learning (ML) algorithms have reduced neuro-

radiologists’ workload and improved diagnosis accuracy by

doing an automated classification, using only MRI data

without any other patient information [12–22]. These

algorithms, including both classical ML and Deep Learning

(DL) methods, have addressed the Alzheimer’s classifica-

tion problem based on the OASIS dataset, mainly axial

plane and demographic data, with accuracies ranging from

68 to 98%. However, classical ML algorithms need train-

ing data with features selected by a specialist, and current

DL architectures are complex, overspecialized, and require

intricate image preprocessing. Furthermore, the sagittal

plane of MRI images has been scarcely studied, missing the

opportunity of finding patterns of neurological atrophy,

such as the reduction of the hippocampus, which is not

observable from the axial plane.

The main objective of this work is to find the best

Convolutional Neural Network (CNN) architecture for

Alzheimer’s classification from sagittal MRI images. This

architecture must fulfill the following requirements: i) be

formulated to learn from a set of representative MRI

images, ii) do not require geographic data, iii) do not need

feature selection performed by specialists and iv) minimize

both image preprocessing and the number images for

training. If these requirements are met, a worthy computer-

aid diagnosis tool would be available for practitioners,

complementing the early detection of the disease.

2 Methods

2.1 Datasets, subjects and MRI acquisitions

The OASIS datasets provide open access to neurological

images for clinical and cognitive research [23]. There are

four datasets, namely, OASIS-1, OASIS-2, OASIS-3, and

OASIS-4. The datasets OASIS-1 (axial) and OASIS-2

(sagittal) have been employed for segmentation algorithms,

hypothesis-based analyzes, and beyond. OASIS-3 is useful

as a longitudinal neuroimaging and cognitive dataset for

the study of Alzheimer’s and other diseases. OASIS-4 is

the latest release in the OASIS project, it contains MR,

clinical, cognitive, and biomarker data for individuals that

present memory complaints.

In this work, we focus on the OASIS-2 dataset, which is

made up of a collection of 150 right-handed patients (72

non-demented, 14 converted, and 64 demented) with ages

ranging from 60–96 years. Each patient was explored on at

least two visits, with one year or more between visits,

obtaining 373 imaging scans. All data were acquired using

the same procedure and scanner. Three to four T1-weighted

individual images were acquired for each patient by a 1.5 T

Vision scanner. Only the first T1-weighted image was used

for experiments. A thermoplastic face mask and cushioning

were employed to minimize head movement. The type of

scanner and the number of images was maintained during

the whole study. A sample of the available MRI images is

illustrated in Fig. 1. ADNI-1 dataset is similar to OASIS-2,

both of them provide the sagittal plane of MRI images.

ADNI consists of 400 subjects diagnosed with mild cog-

nitive impairment (MCI), 200 subjects with early AD, and

200 elderly control subjects with ages ranging from 55 to

90 years [11].

2.2 Preprocessing and preliminary analysis
of the OASIS-2 clinical records

Feature Selection: based on correlation analysis, seven

features were selected as input for the classical ML models:

(1) age, (2) sex, (3) education level, (4) Clinical Dementia

Rating (CDR), (5) Mini-mental State Examination score

(MMSE), (6) normalized whole brain volume (nWBV) and

(7) Atlas Scaling Factor (ASF). These features were also

considered in previous works [15], but ASF was used

instead of the Estimated Total Intracranial Volume (eTIV).

Delay, visit, and Socio-Economic Status (SES) were

eliminated for not being relevant characteristics for the

model. The eTIV was omitted because it is strongly cor-

related with the ASF.

2.3 Classical machine learning methods

To have a basis for comparison with our proposal, various

classic ML algorithms were implemented, and are briefly

defined below.

(a) Support vector machines (SVMs). It is an ML model

useful for classification that finds an optimal hyperplane to

discriminate between two classes by transforming the

classification problem into a quadratic optimization one as

follows [24, 25]: Starting from a set of n sample points

D ¼ fxi; yigni¼1, and considering xi 2 Rd as the i-th training
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vector along with yi 2 f�1;þ1g as its category label; a

SVM algorithm is stated as:

MaxL að Þ ¼
Xn

i¼1

ai �
1

2

Xn

i¼1

Xn

j¼1

yiyjaiajKðxi; zjÞ ð1Þ

s:t: C � ai � 0 8i ¼ 1; . . .; n
Xn

i¼1

aiyi ¼ 0

where a are the Lagrange multipliers, C is a penalty

hyperparameter, xi; zj 2 Rd are two given training vectors;

and K x; zð Þ in Rd � Rd is a kernel function K x; zð Þ ¼
h/ xð Þ;/ zð Þi [26].

(b) Naı̈ve Bayes (NB). This classifier predicts a label

y 2 f0; 1g based on a feature vector x ¼ ðx1; . . .; xdÞ, where
each xi 2 {0, 1}, the learning algorithm determines the

probability of being part of one class taking the maximum

frequency of attribute identified in the training dataset [27].

(c) k -Nearest Neighbors ( k-NN). It is a distance-based

classifier that identifies the k closest points (neighbors) to

the instance being evaluated, where the labels of these

neighbors decide the predicted label [28]. The k points in D

that are closest to the evaluated x are selected. This esti-

mator counts the number of points corresponding to each

class (c) that are in the closest group and provides the

estimate shown in Eq. 2, where Nkðx;DÞ correspond to

indices of the k closest points to x 2 D, y 2 N; and I(e) is a

function indicator that returns 1 when e is positive or 0

when e is negative.

p y ¼ cjx;D; kð Þ ¼ 1

k

X

i2Nkðx;DÞ
Iðyi ¼ cÞ ð2Þ

(d) Decision Tree (DT). As a classifier, the goal is to

predict the label corresponding to the test x by processing

the tree from the root to a leaf, where each intermediate

node states a threshold to discriminate the instances

according to a feature value [29]. This model can be

written as:

f xð Þ ¼ E yjx½ � ¼
XM

m¼1

wmI x 2 Rmð Þ ¼
XM

m¼1

wm/ x; vmð Þ ð3Þ

where Rm is defined as the m’th region, wm is a class label

distribution for each leaf and vm represents the variable to

be split. Finally, / is defined as / xð Þ ¼
½K x; l1ð Þ; . . .:;K x; lNð Þ� where lk are the complete training

data or a given subset [30].

(e) Random Forest (RF): A combination of decision

trees is used to build this classifier aiming to decorrelate

individual trees randomly choosing a subset of input vari-

ables. The prediction of the RF is based on a voting

scheme that counts the individual predictions of each tree

Fig. 1 Representative images of the OASIS-2 dataset for Alzheimer’s classification, showing examples of the three classes: demented, non-

demented and converted. The ADNI dataset only involves demented and non-demented classes
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[27]. It is possible to take M distinct trees for training,

belonging to different subgroups, so that these are selected

randomly and with replacement, to calculate Eq. (4), where

fm is the m’th tree [30].

f xð Þ ¼
XM

m¼1

1

M
f
m
ðxÞ ð4Þ

2.4 Convolutional neural networks

CNN is a feed-forward neural network widely used in

image processing. The CNN input vectors are images

structured as hypermatrices arrays from which, each part of

the input image is extracted in the so-called receptive field.

CNN uses a mathematical operation called convolution,

denoted as s tð Þ ¼ ðx � wÞðtÞ, where xðtÞ and wðtÞ are two

functions. In ML applications, data are discrete, and the

following discrete convolution is employed:

s tð Þ ¼ x � wð Þ tð Þ ¼
X1

a¼�1
x að Þwðt � aÞ ð5Þ

where x is the Input and w is the Kernel in the convolu-

tional network terminology. In practice, both functions are

zero everywhere, but the points for which the function

values are stored. When working with a two-dimensional

image as input I and assuming a two-dimensional kernel K

is applied, (5) can be conveniently implemented as [31]:

S i; jð Þ ¼ I � Kð Þ i; jð Þ ¼
X

m

X

n

I iþ m; jþ nð ÞKðm; nÞ

ð6Þ

where K is a multidimensional array of parameters

arranged on a regular grid with a variable number of axes

[31, 32]. VGG-16 [33] and RestNet-50 [34], are repre-

sentative CNN architectures, that were used to classify the

ImageNet dataset in 2014 and 2015, respectively. Through

the Transfer Learning strategy, it is possible to reuse the

learned filters of these two architectures in new classifi-

cation tasks.

2.5 Validation methods and performance
metrics

To improve performance, it is necessary to find suit-

able hyperparameters for the algorithms. In addition, to

ensure the performance reliability of the algorithms under

examination, standardized methods and metrics are

required.

Grid search is a process of hyperparameter tuning to

decide the optimal values for a given model. It uses a loop

through predefined hyperparameters and fits the model on

the training set, selecting the best parameters [35].

The k-fold cross-validation strategy consists in dividing

a set of training points into k subsets (folds), of the same

number of elements. The first subset is used for validation,

and the remaining k – 1, is used to train the method [36].

Bootstrapping refers to any test employing a random

sample using replacement. It assigns accuracy values to

each sample. The distribution of any statistic can be esti-

mated by this technique [35].

Accuracy is the ratio between right predictions and the

total of cases examined, Sensitivity is the number of pos-

itive cases predicted correctly, and Specificity is how well

our model predict the negative cases, as stated in

Eq. (7,8,9) [37]:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð7Þ

Sensitivity ¼ TP

TPþ FN
ð8Þ

Specificity ¼ TN

TN þ FP
ð9Þ

where TN = True negative, TP = True positive, FN =

False negative and, FP = False positive.

2.6 Experimental design

The whole experimental setup is illustrated in Fig. 2. The

concepts, definitions, and methods indicated in each stage

were provided in previous sections. Hyperparameters and

experimental strategies are described below.

a. Selection of the more relevant features of the OASIS-2

geographic information using a correlation heatmap.

The resulting features were already described in

Sect. 2.2.

b. A hyperparameter tuning scheme by using cross-

validation and Grid-search strategy, was used to find

the best hyperparameters of both classical ML classi-

fiers and CNN architectures (excluding VGG-16 and

ResNet-50, in which predefined settings and frozen

convolutional layers were employed, using the imple-

mentations from Keras [38] and Tensorflow [39]. All

datasets (ADNI-1 MRI images, OASIS-2 MRI images

and OASIS-2 demographic data) were partitioned with

a 75/25 scheme. 75% of data for training and the

remaining 25% for test. This partitioning was resam-

pled 10 times to measure variability between indepen-

dent runs. Care was taken to ensure that each partition

include different patients.

c. Classical ML methods (SVM, RF, DT, NB, and k-NN)

and their corresponding experimental settings, were

implemented for a direct comparison against both the

proposed and Transfer Learning CNNs. For these ML

classical methods, the best hyperparameters were used,
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a SVM with radial basis function (RBF) and c = 0.4

kernel; a RF with a max depth of 10; a DT with a max

depth of 2; a gaussian NB; and a k-NN, which achieve

the best accuracy, was trained by calculating the

Manhattan distance and k = 7 nearest neighbors.

d. The performance of the different designed CNNs was

compared in terms of accuracy against the framework

of classical ML methods and against the state-of-the-

art DL methods. Sensitivity and Specificity metrics

were also used to evaluate all tested CNNs.

e. From the first T1 study of each patient, the 90th slice of

the MRI sequence for OASIS-2 and a similar slice

between 90th and 115th from ADNI-1 was selected

because it shows a neat image of the brain, and also

because previous studies concluded that center slices

contain the most relevant information for diagnosis

purposes [18, 19]. In [18] a total of 10 slices (88 ± 5)

were extracted, in [19] 30 slices from 71st to 100th

were selected and in [22]the 80th slice from OASIS-1

was used.

f. An augmentation technique was implemented, in

which the 373 images selected were rotated at 90�,
180�, and 270�, obtaining at the final a total of 1492

images to train the different CNNs. This strategy

strengthens the CNN architecture because it promotes

invariance to rotation. Noise injection, gamma correc-

tion, and other augmentation methods were not

considered for two reasons: i) Because the raw image

in the original dataset already includes electronic noise,

motion artifacts, distortions from dental work and

limited image contrast presented in real environments,

ii) to keep a reduced sample size.

g. In this study, we experiment with different CNN

architectures, looking for the most simple and accurate

one, capable of solving the Alzheimer’s classification

problem without the feature selection step. CNNs were

designed by varying their architecture and hyperpa-

rameters, as shown in Table 1. To measure the CNN

variability between independent runs, a bootstrapping

method was used ten times, each time resampling with

the replacement of the whole cross-validation folds.

The same strategy is followed by [22].

For all the images and codes used in this study to be

available, a GitHub repository was created, which can be

accessed following the link https://github.com/GinaWaldo/

OASIS2-CNN.git [40].

3 Results

Three groups of ML algorithms were employed to solve the

MRI Alzheimer’s classification problem. The first group

includes classical ML classifiers. The second group con-

sists of Deep Neural Networks with one or two convolu-

tional layers as feature extractors and dense layers as

classifiers, which were designed by varying the compo-

nents and hyperparameters specified in Table 1. The last

group involves pretrained CNN bases from the VGG-16

and Resnet-50 architectures as feature extractors and the

same shape of dense layers as those used in the second

group as classifiers. The results of these three groups of

algorithms are reported in Table 2 and described below.

The group of classical ML algorithms was considered to

establish a reference framework of comparison with both

the designed and pretrained CNN architectures. These

algorithms were trained and tested with the OASIS-2

geographic data. The best results obtained both in our

experiments and in previous works are reported in Table 2.

The highest average accuracy of 92.13% ± 3.48 was

obtained with a k-NN algorithm.

Regarding the group of designed CNNs, multiple

architectures with one or two convolutional layers were

tested. The best CNN found has the architecture illustrated

in Fig. 3, which consists of a single convolutional layer

with a 3 9 3 kernel and a max pooling layer, also includes

an ELU activation function, a flatten layer, and a dense

layer of three outputs corresponding to each of the

Table 1 CNN-2D architecture

and hyperparameters
Hyperparameter/component Values

Convolution 3 9 3 Kernel

Pooling Max pooling

CNN activation function {ELU, ReLU, Leaky ReLU, PReLU, Softmax, Linear}

Dense layer Linear activation function

Dense layer SoftMax function

Batch size {16,32,64,128}

Epochs {6,12,24,48,100,1000}

Initialization rate 0.001

Optimizer AdaGrad

Dropout 0.5
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Table 2 Performance of ML

algorithms employed for

Alzheimer’s classification

Classical ML algorithms Accuracy (mean ± std. dev) our experiments Best reported [12, 13, 15, 17]

k-NN 92.13% ± 3.48 90.74%

RF 92.0% ± 1.8 96.66%(i), 93.56%(ii)

DT 90.0% ± 4.3 99.28%(iii)

SVM 89.9% ± 3.2 92.57%

NB 85.3% ± 3.5 87.29%

Designed CNNs Acc Sensitivity Specificity Best hyperparameters

(mean ± std. dev)

CNN-1 (OASIS-2) 50.1%

± 4.1

50.1%

± 4.1

48.8%

± 10.0

Batch size = 16 Epochs = 100 AF = ELU

CNN-2 (OASIS-2) 50.5%

± 5.5

49.1%

± 3.7

49.0%

± 5.8

Batch size = 16 Epochs = 100 AF = ELU

Pretrained CNNs Acc Sensitivity Specificity Best hyperparameters and best reported

accuracies [18, 21, 22](mean ± std. dev)

VGG-16 (OASIS-2) 55.6%

± 4.2

55.6%

± 4.2

55.6%

± 4.2

Batch size = 16 Epochs = 100 AF = ELU

ResNet-50 (OASIS-2) 54.4%

± 5.8

54.4%

± 5.8

54.4%

± 5.8

Batch size = 16 Epochs = 1000 AF = ELU

BrainNet2D (OASIS-

1 and 2)

88%(iv) AF = ReLU

ResNet-18 (OASIS-1

and 2)

89%(iv) AF = ReLU

ADVIAN (OASIS-1) 97.76% ± 1.13 AF = ReLU

CNN-BND (OASIS-

1)

97.19% ± 0.89 Batch size = 256 AF = ReLU

Pretrained

CNNs

Acc Sensitivity Specificity Best reported accuracy mean [41]

(mean ± std. dev)

VGG-16 56%

± 4.0

56%

± 4.0

56%

± 4.0

\ 60% with different classical ML methods k-NN, RF,

XGBoost, SVM, MLP and others(v)

All algorithms used a train/test data partition of 75/25, except for [18] and [19] that used an 80/20 (fivefold

cross-validation partition). Mean ± standard deviation is computed from a bootstrapping strategy of 10

independent runs. In the hyperparameters column, AF stands for the Activation Function of the dense layer

in CNNs
(i) The accuracy reported for RF by Shanmuga et al. [15] is the maximum obtained in their experiments. No

confidence interval is given
(ii) Before the classification with RF, a feature selection was performed by employing the Particle Swarm

Optimization (PSO) algorithm [17]
(iii) The accuracy reported for DT by Bansal et al. [12] is doubtful and this will be explained in the

discussion section
(iv) No standard deviation for the accuracy, batch size nor epochs were reported by Saratxaga et al. [18] .

Authors do not describe how images partitions were made. They mention that ‘‘Only the horizontal
(transverse) plane images have been used for training and testing the models.’’ And that ‘‘OASIS-2 has
been used for validation purposes of the proposed approach.’’ Therefore, the high accuracies reported are

associated to the training with OASIS-1
(v) The work of Balansundaram et al. 2023 [41] , is the only work found in the literature that experimented

with MRI images of OASIS-2. No average accuracy was reported, the performance of the algorithms was

presented in Figs. 6 and 7, Sects. 5.1.1 and 5.1.2 in that work. [5]
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categories in the OASIS-2 classification problem. The

convergence to the highest accuracy reached by the best

CNN found is presented in Fig. 5, graphs a) and b).

Concerning the third group of classifiers, VGG-16 and

ResNet-50 architectures were tested. The best CNN was

VGG-16 with the configuration illustrated in Fig. 4, whose

convolutional base is already pretrained with the ImageNet

dataset. The convergence to the highest accuracy reached

by both VGG-16 and ResNet-50 is presented in Fig. 5,

graphs c) and d). It is worth mentioning that ResNet-50

required more than 100 epochs to converge, and because of

this, it was extended to 1000 epochs. This and other rele-

vant results and findings are discussed in the next section.

4 Discussion

Two groups of algorithms were studied in this work,

classical ML methods and DL CNN architectures.

Regarding classical ML methods for Alzheimer’s classifi-

cation, previous studies do not report a variability measure,

which can be a sign of bias in their experiments and no

option for reproducibility. Therefore, these classical ML

Fig. 3 CNN-2D architectures designed for dementia MRI classifica-

tion problem. The elements highlighted in blue show the best

architecture found: Conv2D-ELU-MaxPooling2D-Dropout-Flatten-

Dense-ELU-Dropout-Dense. The best hyperparameters were batch

size = 16, epochs = 100

Fig. 4 VGG-16 architecture

processing MRI dementia

images. The pretrained

convolutional base (blue and

green blocks) is used as a

feature extractor. The classifier

(orange and red blocks) was

trained with the OASIS-2

dataset
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methods were reproduced to have a reliable basis for

comparison with our proposed DL CNN architectures.

Performance metrics of classical ML methods found in our

experiments agree with the results of previous works

[10–15] as observed in Table 2. Two notable exceptions are

the case of the 96.66% accuracy obtained with the RF

algorithm reported in [15], where the maximum instead of

the average performance is reported; and the case of the DT

algorithm reported in [12] which claim to reach an accu-

racy of 99.28%. This result lies outside the range of

accuracies reported in all previous studies, including state-

of-the-art DL approaches reported in [20]. After a thorough

revision of the DT exception, two methodological omis-

sions were found: (i) the authors do not explain the number

of instances used for the accuracy computation, and (ii) a

validation scheme like k-fold or bootstrapping was miss-

ing. Therefore, this accuracy level is doubtful and should

be considered carefully. In [14] authors obtained a 68.75%

accuracy by using a SVM with RBF kernel on the geo-

graphic data of OASIS-2. This low performance might be

due to the hyperparameter tuning scheme used by the

authors in which only low and high values for C and

gamma were considered. In our experiments, a grid search

scheme obtained 89.9% ± 3.2, which agrees with the

result found in [15] of 92.57%.

In contrast to previous studies that employ classical ML

algorithms and are dependent on the features proposed by

neuroradiologists, the DL CNN architectures offer a com-

plementary interpretation of the MRI images because these

find non-evident features for the specialists, thus increasing

available information for the Alzheimer’s diagnostic.

The MRI studies available in the OASIS-2 and ADNI-1

datasets are sequences of longitudinal images that form a

complete brain scan. Our experiments proved that a rep-

resentative image (90th slice in OASIS-2 and a similar

slice from ADNI-1 90th -115th) of each of these sequences

is enough for the extraction of relevant features that lead to

a classification of Alzheimer, up to 56 ± 4% according to

the results presented in Table 2, confirming state-of-the-art

results reported by [41].

Deep Learning approaches have been recently imple-

mented (since 2017) for Alzheimer’s classification, and

these are reviewed in [20]. The most recent and best-per-

formed DL methods found in the literature are CNN-BND

(2020) and ADVIAN (2021) with accuracies of

97.19% ± 0.89 and 97.76% ± 1.13, respectively. These

two works are close to our proposal; however, both were

trained with the images of OASIS-1 (axial plane), which

are different from OASIS-2 (sagittal plane), and therefore

not directly comparable, but complementary since these are

Fig. 5 Convergence of the designed a CNN-1, b CNN-2 and pretrained c VGG-16, d ResNet-50 convolutional networks. Maximum, average,

and minimum of 10 independent runs are shown for each architecture
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the two most common types of MRI images available in

clinical practice.

One of the closest studies to our proposal that trained the

CNNs, BrainNet2D, and ResNet-18, in 2021 obtained

accuracies of 88 and 89%, respectively [18]; however,

CNNs were trained with OASIS-1 and validated with

OASIS-2 impeding a direct comparison. Another recent

related work trained different classic ML algorithms with

the MRI sagittal images from OASIS-2 [41], this is the

only study found in literature that allows a comparison

against our proposal. This comparison is presented in

Table 2 and the conclusion is that both classic ML algo-

rithms our proposed CNNs reached similar performance on

OASIS-2 dataset. Leaving a wide room for improvement in

the performance of Deep Learning algorithms trained with

MRI sagittal images.

The VGG-16 architecture is simpler than ResNet-18,

ResNet-50, and similar to BrainNet2D, concerning the

number of convolutional layers. This behavior was also

observed for ADVIAN (a variant of VGG-16 with convo-

lutional blocks attention modules) and CNN-BND (eight

layers), regarding the better performance compared to more

complex CNNs like ResNet-50 or Inception V4. An

explanation of this behavior is offered in terms of over-

specialization. According to theory [38], the first layers of a

convolutional network learn generic filters that are useful

for solving tasks with input images different from those

used for training. In contrast, deeper layer filters learn very

specialized patterns and are therefore not useful in other

tasks. This does not mean that complex architectures are

useless, but that due to their complexity, they probably

require several images for complete retraining or, as shown

for ResNet-50 in Fig. 5 d), many more epochs to converge.

Although image preprocessing of brain MRI, involving

skull removal, motion correction, atlas registration, and

gamma correction, among other strategies are commonly

used in previous studies [18, 21, 22], there is no standard

preprocessing workflow. In addition, no performance was

reported by these studies about pretrained DL methods

handling images without explicit preprocessing. It is pos-

sible to carry out an implicit preprocessing because pre-

trained CNNs have several filters available to recognize

borders, textures, and other patterns that allow the extrac-

tion of relevant features from raw images independently of

their location and scale. This is known as Transfer

Learning and has shown promising results for medical

image analysis in recent years as reported in the review

provided by [42]. Following this latter scheme, we applied

the convolutional base of the VGG-16 pretrained with the

ImageNet dataset and the results shown in Table 2 confirm

that is possible to reach reasonable accuracy rates for

Alzheimer’s classification using transfer learning without

explicit image preprocessing.

In previous studies and our experiments, was observed

that CNNs architectures with few layers suffice to obtain a

high performance in Alzheimer’s classification. Following

this observation, the question of how many layers we need

emerges. To answer this question, we tried several con-

figurations of CNNs. As illustrated in Fig. 3, the architec-

ture with one convolutional layer (VGG-16) outperformed

the classic two-layer architecture (ResNet50). This is an

indicator that generic filters obtained in the first convolu-

tional step are enough to provide a good characterization of

the input image. More specialized filters obtained in the

second convolutional layer reduce the effectiveness of the

classifier. Not only the accuracy is better but also the

convergence is reached in fewer epochs with VGG-16.

Figure 5 a) and b) shows that both CNN-1 and CNN-2

convergence in around 50 epochs for training accuracy, but

the validation accuracy is unstable without a sign of con-

vergence during the 100 epochs. Similarly, Fig. 5 c) shows

that the VGG-16 convergence in less than 100 epochs,

while d) ResNet-50 requires more than 1000 epochs.

Figure 4 shows the configuration of the pretrained

convolutional base VGG-16 that outperformed ResNet-50.

VGG-16 is a simple architecture that may be considered as

a baseline for MRI Alzheimer’s classification using the

MRI sagittal slices, for axial plane images other options

such as ADVIAN and CNN-BND are available. To ease

the reproducibility of the discussed experimental results, all

our codes and images are publicly available at [40].

4.1 Limitations

There are two main limitations of the proposed CNNs.

First, as the number of subjects used to train the CNN

might be not representative of the overall population of

dementia patients, care must be taken not to blindly trust

the tool when applied to other populations of subjects with

dementia. Also, for the converted group, classifications are

not accurate in most cases and might tend to underestimate

the change in the patients from one category to another.

The MRI images employed are in NIfTI-1 format and we

cannot assure that the CNN works with other formats. With

the accuracy levels reached so far by both classic ML

methods and CNNs trained with MRI sagittal images, the

proposed approach is not yet suitable to implement on the

clinical practice and opens the opportunity of testing more

preprocessing strategies, CNN architectures, MRI slices,

and datasets, looking for improvements on the performance

of methods for Alzheimer’s classification.
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5 Conclusions

The VGG-16 variant proposed for Alzheimer’s classifica-

tion from the OASIS-2 and ADNI-1 datasets of MRI

images was as accurate as previous classical ML methods

but inferior to the training with the OASIS-1 dataset. The

highest accuracy in Alzheimer’s classification obtained by

both ML and DL methods is close to 98% for OASIS-1,

less than 60% for OASIS-2 or ADNI-1 considering all the

algorithms found in the literature. All the state-of-the-art

CNNs achieved a higher accuracy than the best classical

ML algorithms previously reported. While classical meth-

ods start from a characterization conducted by specialists,

CNNs start from raw images without preprocessing; with

the exception of OASIS-1, that is already preprocessed.

Therefore, it is concluded and confirmed in our experi-

ments that CNNs have the advantage of being simpler to

train while maintaining or surpassing the accuracy of pre-

vious classical ML methods.

Simple CNNs, with few layers, suffice to automatically

learn filters to extract features that characterized and lead

to accurate discrimination between the presence or absence

of Alzheimer. The designed and pretrained CNNs ana-

lyzed, learned from one representative MRI image, and

classified Alzheimer without the feature selection step,

where geographic data is provided by neuroradiologists nor

explicit preprocessing.

Our methods and the rest of the state-of-the-art CNNs

have been studied on benchmark datasets like OASIS-1,

OASIS-2, ADNI, and others. Since these images were

obtained from real cases, they can be considered as a ref-

erence for the study of structural damage in Alzheimer’s

patients and until now, OASIS-1 has demonstrated to be

the best available option.
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